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a b s t r a c t

A room temperature fabrication method for the mass production of carbon nanotube (CNT) field emission
micro-cathode arrays is reported. The technique combines electroplating of a CNT/Ni composite and
micro-machining. This method combines the advantages of direct growth and screen printing conven-
tionally used to fabricate such structures and avoids their disadvantages. Due to its integration and room
temperature processing, the technique is proven to be advantageous in mass production and low cost.
Results of field emission testing show that the CNT micro-cathodes have excellent field-emission prop-
erties, such as high current density (15.7 mA/cm2), field enhancement factor (2.4 � 106/cm), and good
stability (109 h for 10% degradation of current density from 400 mA/cm2).

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Electron field emitters based on carbon nanotubes (CNTs) are
currently being investigated as next-generation materials for cold
cathodes [1e6]. Compared to other field emitters such as Spindt-
type and silicon field emitter arrays, CNTs possess the advantages of
very high aspect ratio, small radius of curvature, lack of vacuum-
arcing, low sputter yield, chemical inertness, thermal stability and
lowwork function of electron tunneling [7]. CNT field emission cold
cathodes have a potential to be applied to emission devices which
include flat panel display, cathode ray tubes, backlights for liquid
crystal displays, outdoor displays and traffic signals [8e13]. In the
realization of CNT field emission micro-cathodes, two approaches
have been basically used in the application of CNTs. One involves
printing a paste of CNT/epoxy composites [14e18]. This method has
been commonly used in the economic fabrication of diode-type
emitters for large area field emission displays which employ pixels
of relatively large areas. It uses the CNTs distributed and exposed out
of the paste in a randommanner; thus, the fluctuation in the height
of the CNT tips requires a relatively large cathode-to-anode distance
to ensure the stability and reliability of the emission. The triode
structuremade of an extension of the same technology also requires
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a relatively large cathode-to-gatedistanceas shown in the literature.
The other method, meanwhile, directly deposits CNTs on a pre-
patterned selective area of the pixels which are coatedwith catalyst
metal films through the chemical vapor deposition [19e29]. The
method is of high efficiency for controlling the CNT alignment,
density, and length. However, the preparation method has the
following three disadvantages: (1) the adhesion of the CNTs which
are catalytically grown on the substrates is often not strong enough
to survive the mechanical shaking involved in the fabrication
processes; (2) the high temperature condition (800e1000 �C)which
may damage some glass substrates is obligatory for this method. In
addition, direct growth and screen printing may cause the tubes be
contaminated with some impurities, like metallic catalyst particles,
amorphous carbon or organic residues which can introduce further
defects into the CNTs during their removal [30e32]. If all these
advantages in bothmethods are combined and all disadvantages are
eliminated, a CNT field emission micro-cathode with good proper-
ties can be fabricated.

In this study, we demonstrate an effective approach to fabricate
CNT field emission micro-cathode arrays at room temperature.
Initially, pretreated multi-walled CNTs and Ni are deposited onto an
Au bottom electrode layer by composite electroplating; subse-
quently, protruding tips of CNTs are obtained by etching away a layer
ofNi as emitters, followed byemitter pixels and triode-typestructure
layer being formed by electroplating and micro machining.
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Fig. 1. Fabrication process for the CNT emitters:(1) sputtering a Cr/Cu (30/50 nm)
conducting layer on a glass substrate, (2) photolithography of CNT emitter pixels, (3)
composite electroplating of the CNT/Ni composite film, (4) polishing of the surface of
CNT/Ni composite film, (5) wet chemical etching of Ni layer, (6) photolithography of
CNT emitter arrays, (7) and (8) removing the photoresist after RIE of CNTs not used as
the field emitters.
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2. Experimental details

Referring to Fig. 1, the fabrication process of CNT emitters is
described as follows: [32]
Fig. 2. The 3D structure drawing of the CNT field emission m
(1) Cr/Cu (30/50 nm) is deposited on a glass substrate as the
conducting layer by sputtering.

(2) Photoresist spin coating and photolithography are performed
to form emitter pixels.

(3) The CNT/Ni composite film is deposited on Cr/Cu conducting
layer by composite electroplating (the reason for choosing Ni as
the basement is its good resistance to corrosion). Initially,
multi-walled CNTs with tube diameters ranging from 20 to
40 nm are boiled in potassium hydroxide molten for 5 h and
concentrated sulfuric acid for 21 h in order to obtain pure and
dispersed emitting materials. Then, the pretreated CNTs are
added into Ni electroplating solution, and the solution is
sonicated at 21 kHz for 3 h to produce a homogeneous
suspension. Finally, the CNT/Ni composite film are deposited
on the Cr/Cu conducting layer by composite electroplating
using the CNT suspension.

(4) The CNT/Ni composite film is polished by polisher to form a flat
surface (roughness Ra <0.2 mm).

(5) A layer of Ni is etched away from the CNT/Ni composite film
with a flat surface to obtain protruding tips of CNTs as emitters
by wet chemical etching, the etching depth is carefully
controlled by etching time in order to keep the roots of CNTs
still remain in the metal matrix.

(6) Photoresist spin coating and photolithography are performed
to protect those CNT arrays used as field emitters in the process
of reactive ion etching (RIE).

(7) Removing the photoresist after RIE of CNTs not used as field
emitters.

All experimental steps stated above in (1)e(7) are executed at
room temperature [32].

On the basis of preparing the CNT emitters above, we propose
a novel design of CNT field emission micro-cathode arrays. The 3D
structure drawing is shown in Fig. 2, compared with previously
icro-cathode arrays (A) and its local enlarged view (B).
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reported CNT field emission micro-cathode [33e36], this structure
has relatively complete functional units, including bottom elec-
trode, down-lead, current-limiting resistance, CNT emitters, sup-
porting wall, insulator layer, suspension grid and focusing
electrode. In this design, each structure layer is fabricated by using
layer by layer lithography alignment process at room temperature.

The flow of the fabrication process for the CNT field emission
micro-cathode arrays is shown in Fig. 3 and the detail process is
described as follows:

(1) First, a patterned Au layer (w1 mm) is deposited on the Cr/Cu
(10/40 nm) seed layer as bottom electrode by photolithography
and electroplating (Fig. 3A).

(2) Then, a polysilicon film (w50 nm) is sputtered on the Au
electrodes as resistor layer (Fig. 3B), and the fabrication of
patterned CNT emitters is performed (Fig. 3C).

(3) Afterward, a patterned Ni supporting wall (w5 mm) is prepared
by photolithography and electroplating (Fig. 3D).
Fig. 3. Schematics of the fabrication process for the CNT field emission micro-cathode arra
troplating, (B) resistor layer (ploysilicon) is deposited on the bottom electrode by sputterin
troplating, (D) patterned Ni supporting wall is prepared by electroplating, (E) patterned Al2O
gate electrode is performed by electroplating, (H) patterned Ni focus electrode is performe
(4) Then, an Al2O3 insulator layer (w80 nm) is deposited on the
supporting wall to suppress the leakage current by sputtering
(Fig. 3E).

(5) Subsequently, patterned Ni gate electrode (w1 mm) is per-
formed by electroplating (Fig. 3F,G)

(6) Finally, patterned focus electrode (w3 mm) is formed by
photolithography and electroplating (Fig. 3H).
3. Results and discussion

The optical images of the integrated devices are shown in Fig. 4
(A and B) and their higher magnifications are shown in Fig. 4(CeE).
It can be seen that the integrated CNT field emission micro-cathode
arrays have uniform structure and good repeatability. The gate
pores’ diameter isw1 mm and the height between the Ni metal gate
and the CNT pattern edge is w5 mm (Fig. 4D). The pore density is
about 1.2 � 105/cm2. The inset map in Fig. 4E is a magnified view of
ys: (A) patterned bottom electrode (Au) is deposited on the Cr/Cu seed layer by elec-
g, (C) patterned CNT emitters are fabricated by photolithography and composite elec-
3 insulator layer is deposited on the supporting wall by sputtering, (F)(G) patterned Ni
d by electroplating.



Fig. 4. The optical images of integrated devices (A, B) and their higher magnifications (C, D and E). The inset map in Fig. 4E is a magnified view of a CNT emitter pixel and the active
CNTs.
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a CNT emitter pixel; the CNTs are uniformly embedded in the pixel
and the active CNT density is 5e8/mm2 in the CNT emitters as
shown in the inset map. The emitter pixel spacing shouldn’t be too
small, small emitter pixel spacing would induce the field-screening
effect between adjacent emitters. However, big emitter pixel
spacing would decrease the display effect of field emitters. In the
fabrication process of the integrated devices, it is convenient to
adjust the size of emitter pixels by masking and photolithography.
The optimized distance between CNT emitter pixels is 2.5 mm and
the area of emitter pixel is 9 mm2 in the present study.

The dc electron field-emission properties of the device are
measured in a vacuum chamber at a pressure of 1.7 � 10�5 Pa. The
gate voltage is varied up to 60 V. The gap between the gate and the
cathode is 5 mm, and the electric field referring to the value of the
applied voltage mentioned in the following descriptions is divided
by the electrode distance. Fig. 5 shows a plot of the field-emission
current density (ECD) versus the applied electric field, and the
corresponding field emission curve is shown in the inset. It is easy
to find that all dots on the field emission curve fit a single straight
line well, which indicates the Fower-Nordheim-type field-emission
behavior. Obviously, the ECD of the emitters increases mono-
tonically with the applied field. When the applied electric field is
high, the gate current gets saturated and remains constant. The
highest gate current density is about 15.7 mA/cm2 at an applied
electric field of 12 V/mm and the measured turn-on field to extract
a current density of 10 mA/cm2 is 2.4 V/mm.

The device characteristics are compared with those in other CNT
emitter structures, although they are all fabricated by different
structures and processes [36]. Pirio et al. [37] observed turn-on
voltages of 9e15 V, defined at 0.1 nA/cm2. The low turn-on voltage
was obtained with a sub-micrometer gate-to-tip distance realized
using a self alignment process. However, the turn-on field remained
at relatively high values of 18e30 V/cm. In Hu et al. [38], a structure
fabricated by screen-printed CNTswith a turn-on voltage of 40e45 V
was obtained with w5 mm gate-to-tip distance. Jang et al. [39]
obtained a turn-on voltage of 20 V (turn-on field w1 V/mm) at
w10 nA/cm2 with pasted CNTs. They all report, at most, mA/cm2

range values for the maximum current density. On the other hand,



Fig. 5. The ECD versus the applied electric field for the CNT field emission micro-
cathodes. Inset shows the FowlereNordheim plot.
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Uh [40] obtained an exceptionally high current density of 275 mA/
cm2with a turn-on voltage of 38 V using catalytically grown CNTs. In
summary, the triode emitter structure fabricated on a glass template
using composite electroplating and micro machining shows a very
low turn-on voltage and a high current density, which are better
than or, at least, compatible with those of other triode structures.
The field enhancement factor (b) for the CNT emitters is derived
from the slope of the graph by assuming that the work function of
CNTs is found to be 2.4 � 106/cm under the assumption of the work
function to be the same as that of graphite (4.5 eV), which is
calculated from the following equation: b¼ 2.84�107$Ø3/2/S, where
Ø and S represent the work function of CNTs and the absolute value
of the slope of the FeN plot. The field enhancement factor extracted
from triode-type configuration is approximately two orders of
magnitude higher than that of diode-type configuration fabricated
by using the same method and also much higher than typical values
reported for CNT cathodes, such as 400e1200 for CNTs on silicon
and glass substrates, and 2600e3500 for highly ordered CNT arrays
on porous aluminum oxide [41,42]. The very high field enhancement
factor confirms the high efficiency of the triode structure in electron
extraction. The structure shows good field-emission properties, but
the challenge of fabricating an applied device still remains including
the further optimization of integral construction and preparation
technology.
Fig. 6. Emission stability of the CNT field emission micro-cathodes, operated in
continuous dc mode.
The result of lifetime tests is shown in Fig. 6. The time required
for 10% degradation of current density from 400 mA/cm2 is
approximately 109 h for the sample. The electric field applied to
measure the emission stability is approximately 5.7 V/mm. The
lifetime values for the field emitters are favorably, compared with
those of previous reports, which are in the range of 6e98 h [27,32].
The reasons leading to the stable field emission performance might
be concluded as the uniformity in distribution of the emitters and
the firm combination between CNTs and Ni substrates. The result is
also consistent with what we forecast in this paper.

4. Conclusions

A new CNT field emission micro-cathode array structure fabri-
cated by composite electroplating and micro machining is ach-
ieved. The relevant processing technology is also developed.
Integrated CNT field emission micro-cathodes have intact structure
and good repeatability. The structure revealed a very efficient
performance as indicated by the high field enhancement factor and
current density, low turn-on voltage and good emission stability.
The micro-cathodes can obtain practical applications such as
backlight units of liquid crystal displays and cathode ray tubes. This
study laid a foundation on the device integration and cost-effective
mass production, but it requires further optimization in the device
configuration and processing.
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